California State Water Resources Control Board Leaking Underground Fuel Tank (LUFT) Guidance Manual

Update on the LUFT Manual 2012 SAM Fall Forum

Adrienne Barnes Sullivan International Group, Inc.

LUFT Manual Update

Revised Manual released the week of September 17, 2012!

Incorporates public comments received in August-November 2010

Includes guidance on the Low-Threat Closure Policy

Low-Threat Closure Policy and the LUFT Manual

- •Annual review to determine whether the site meets the Low-Threat Closure Policy criteria.
- Resolution No. 92-49 does not require that the requisite level of water quality be met at the time of case closure
- •Attaining background water quality is not feasible, establishing an alternate level of water quality not to exceed that prescribed in the applicable Basin Plan is appropriate

Fate and Transport of Petroleum in the Subsurface

- Detailed discussion how petroleum migrates and weathers in the subsurface and why
- Physical and chemical properties
- Composition of petroleum products
 - Gasoline
 - Middle Distillates
 - Lubricating Oils

Average Composition of Gas and Diesel

Component	Fresh Gasoline (%)	Fresh Diesel (%)	
Benzene	2.0 (max 2.5)	0.03 (max 0.1)	
Toluene	8.1 (max 12)	0.2 (max 0.7)	
Ethylbenzene	1.7 (max 2)	0.07 (max 0.2)	
Xylenes	9.0 (max 11)	0.5 (<i>max 0.6</i>)	
Naphthalene	0.25 (max 0.36)	0.26 (max 0.8)	
<i>n</i> -Hexane	2.4 (max 3.2)	Not Measured	
2-Methylnaphthalene	0.18 (max 0.29)	0.89 (max 1.5)	
High Molecular Weight PAHs	Not Measured	<0.01	

Potter and Simmons (TPH Criteria Working Group Vol. 2) 1998

Average Composition of Gas and Diesel

Component	Fresh Gasoline (%)	Fresh Diesel (%)	
Aliphatics			
C5-C6	21	0	
>C6-C8	22	0	
>C8-C10	9	2	
>C10-C12	3	7	
>C12-C16	0	35	
>C16-C21	0	34	
>C21-C32	0	0	

TPH fractions are values for fresh "generic" products ODEQ; 2003.

Average Composition of Gas and Diesel

Component	Fresh Gasoline (%)	Fresh Diesel (%)		
Aromatics				
>C8-C10	13	0.43		
>C10-C12	2.3	0.74		
>C12-C16	0	8		
>C16-C21	0	12		
>C21-C32	0	0		
>C8-C10	13	0.43		
>C10-C12	2.3	0.74		
>C12-C16	0	8		

TPH fractions are values for fresh "generic" products ODEQ; 2003. Revised to include the trimethylbenzenes [TMBs] in the C8-C10 aromatics fraction.

Representative Properties of Selected Constituents

	Molecular Weight	Density ⁽¹⁾	Dynamic Viscosity ⁽¹⁾	Pure-Compound / TPH Fraction / Product Mixture Water Solubility ^(1,6)	Pure-Compound Vapor Pressure ⁽¹⁾		
	(g/mol)	(g/cm ³)	(cp)	(mg/L)		Constant ⁽²⁾	Log K _{oc}
Benzene	78.1	0.88	0.6468	1.78 E+03	76	0.23	1.8
Toluene	92.1	0.87	0.58	5.15 E+02	22	0.27	2.3
Ethylbenzene	106.2	0.87	0.6468	1.52 E+02	7	0.32	2.6
Xylenes	106	0.87	0.68	1.8 E+02	9	0.28	2.6
<i>n</i> -Hexane	86	0.7		1.8 E+01	121	5	2.9
Naphthalene	128	1.5		3.1E+01/	0.08	0.02	3.3
				1.10E+02			
MTBE	88.15	0.74		5E+04	251	0.024	1.1
ТВА	74.12	0.79		Infinite	41	0.0005	1.6
Water	18	0.998	1.14				

Conceptual Site Model

- Requirement for Policy!
- Describes all the receptors & exposure routes specific to LUFT Sites
- Policy focus:
 - Groundwater from drinking water wells
 - Vapors in buildings
 - Contact with near surface soil
 - Vapors in the outdoor environment.

Conceptual Site Model

Site Assessment

New ways of approaching Site Assessment

- Shallow soil concentrations
 - 0 to 5-foot depth interval
 - >5 to 10-foot depth interval
- % Oxygen within shallow soil
- Length of plume & location of the nearby water supply wells for separation distance

Site Assessment

- Groundwater Sampling:
 - Goal is to produce low-turbidity samples
 - **▼** Use pre-pack screens for open boring samples
 - Redevelop monitoring wells
 - Use low-flow purge and sampling

Laboratory Analysis and Methods

- More analytes in the Manual than Policy
- TPH used as for site characterization tool
- If TPH is used for risk, use a "fractionated" analysis
- SGC to isolate the petroleum hydrocarbons from the biodegradation metabolites
- Recommendations for implementing turbidity- and sheen-reduction measures at the lab

Risk Evaluation and Management

- Step by step discussion of the Policy criteria
- If one of the pathway criteria is not met under the Policy, a site specific evaluation for that pathway can be performed

Risk Evaluation and Management

Groundwater Plume Classes for Policy

Green & Environmentally Responsible Cleanups

- Becoming more of a priority for the State and Fund
- <u>ustcalc.org</u>: Calculates carbon footprint for 5 common remedial actions

Next Steps

"Evergreen"

Regularly updated

Training:

- Meetings?
- Podcasts?
- Live Web Meetings?

Your Input

Questions and Comments: luftmanual@onesullivan.com

Contact Adrienne Barnes

abarnes@onesullivan.com

720-413-9703